

Resolution No.: Meeting-2/ Dated 18/9/2021

Bharatiya Vidya Bhavan's

M. M. College of Arts, N.M. Institute of Science, H.R.J. College of Commerce. (Bhavan's College) Autonomous

(Affiliated to University of Mumbai)

Syllabus for: S.Y.B.Sc BOTANY

Program: B.Sc. Program Code: BH.BSc

Course Code: (BH.USBO)

Choice Based Credit System (CBCS) with effect from academic year 2022-23

PROGRAM OUTCOMES

РО	PO Description A student completing Bachelor's Degree in Science program will be able to:
PO-1	Apply knowledge and experience to foster personal growth and better appreciation of the diverse world in which we live.
PO-2	Communicate competently through writing, reading, speaking, and to be able to connect to the world in a meaningful way
PO-3	Access scientific knowledge and have developed a scientific temperament
PO4	Besides knowing their specific core discipline knowledge learners will be able to understand common theme within the biological science fields and be capable to applying principles and basic concepts learnt from physics and chemistry
PO5	Solve Problems, generate and test hypotheses, make observations, collect data, analyze and interpret results, derive conclusions, and evaluate their significance within a broad scientific context
PO6	Develop interdisciplinary outlooks

PROGRAM SPECIFIC OUTCOMES

PSO	DESCRIPTION
	A student completing Bachelor's Degree in B.Sc. program
	in the subject of Botany will be able to
PSO-1	To recognize and identify major groups of non-vascular and vascular plants and their phylogenetic relationships.
PSO-2	To understand the phylogeny of plants and study various systems of classification
PSO-3	To explore the morphological, anatomical, embryological details as well as economic importance of algae, fungi, bryophytes, pteridophytes, gymnosperms and angiosperms
PSO-4	To understand physiological processes and adaptations of plants and provide knowledge about environmental factors and natural resources and their importance for sustainable development
PSO-5	To carry out phytochemical analysis of plant extracts and application of the isolated compounds for treatment of diseases
PSO-6	To deal with all microbes and the technologies for their effective uses in industry and mitigation of environmental concerns
PSO7	To deal with all microbes and the technologies for their effective uses in industry and mitigation of environmental concerns
PSO8	To explain how current medicinal practices are often based on indigenous plant knowledge and to get introduced to different perspectives on treating ailments according to ethnomedicinal principles
PSO9	To understand patterns of heredity and variation among individuals, species and populations and apply principles for improvement of quality and yield.
PSO10	To apply statistical tools to gain insights into significantly different data from different sources.
PSO11	To acquire recently published knowledge in molecular biology, such as rDNA technology; PTC and bioinformatics and their applications

	1	KUGKAM	UUILIN			
Sem ester	Core course 14 CREDIT(T+P) =2+1 /COURSE	Ability enhancement course CREDIT 2	Skill enhancement course CREDIT 2	Discipline specific elective* CREDIT 3	Generic elective 04 CREDIT 1	TOTA L CREDI TS
1	C1: Paper 101 of 3 courses selected C2: Paper 102 of 3	English Communication / Environmental Sc (FC)			-	20
	courses selected					
II	C3: Paper 201 of 3 courses selected	English Communication / Environmental				20
	C4: Paper 202 of 3 courses selected	- SC(FC)				
III	C5: Paper 301 of 2 courses selected		(FC)		(SWAYAM/ Coursera) Optional for ECC	20
	C6: Paper 302 of 2 courses selected					
	C7: Paper 303 of 2 courses selected					
IV	C8: Paper 401 of 2 courses selected		SEC2 (FC)		GE4 (SWAYAM/ Coursera) Optional for	20
	C9: Paper 402 of 2 courses selected				ECC	
	C10: Paper 403 of 2 courses selected					
V	C11: Paper 501 of 1 course selected 3 Credits		Practical's based on 2 papers(C11 &12) - 2 Credits	Paper 503 of 1 course selected - 3 Credits	Applied component T+ P (3+1=4 credits	20
	C12: Paper 502 of 1 course selected 3 Credits		Practical's based on 2 DSE papers- 2 Credits	Paper 504 of 1 course selected - 3 Credits		
VI	C13: Paper 601 of 1 course selected 3 Credits		Practical's based on 2 papers(C13 &14) - 2 Credits	Paper 603 of 1 course selected - 3 Credits	Applied component T+P (3+1=4 credits	20

PROGRAM OUTLINE

C14: Paper 602 of 1 course selected 3 Credits	Practical's based on 2 DSE papers- 2 Credits	Paper 604 of 1 course selected - 3 Credits	
TOTAL CREDITS			120

Note-

- 1. The final year B.Sc. students will have the options under DSE (Discipline specific Elective) to drop of one the core paper and do dissertations under the guidance of the departmental faculty/ Any research institute of national importance for both semester V & VI.
- 2. CBCS system will allow the students from science streams in their final year to study the applied component of any of the science subjects available in the college (Eg- Final year Botany student can have the choice to select any one of the Applied components available with Zoology, Microbiology, Chemistry, Statistics, Physics, Mathematics, etc.).

YEAR	SEMESTER	COURSE TYPE	COURSE CODE	COURSE TITLE	CREDITS
F.Y.B.Sc	Ι	Core course	BH.USBO101	Plant diversity I	02
F.Y.B.Sc.	Ι	Core course	BH.USBO102	Form and function I	02
F.Y.B.Sc.	Ι	Core course	BH.USBOP1	Plant Diversity I, Form and Function I (Practical I & II)	02
F.Y.B.Sc.	II	Core course	BH.USBO201	Plant diversity I	02
F.Y.B.Sc.	II	Core course	BH.USBO202	Form and function I	02
F.Y.B.Sc.	П	Core course	BH.USBOP2	Plant Diversity I, Form and Function I (Practical I & II)	02
S.Y.B.Sc	III	Core course	BH.USBO301	Plant diversity –II	02
S.Y.B.Sc	III	Core course	BH.USBO302	Form and function II	02
S.Y.B.Sc	III	Core course	BH.USBO303	Current trends in plant Sciences I	02
S.Y.B.Sc	III	Core course	BH.USBOP3	Botany practical (practical I, II & III)	03
S.Y.B.Sc	IV	Core course	BH.USBO401	Plant diversity –II	02
S.Y.B.Sc	IV	Core course	BH.USBO402	Form and function II	02
S.Y.B.Sc	IV	Core course	BH.USBO403	Current trends in plant Sciences I	02
S.Y.B.Sc	IV	Core course	BH.USBOP4	Botany practical (practical I, II & III)	03
T.Y.B.Sc.	V	Core course	BH.USBO501	Plant diversity – III	03
T.Y.B.Sc.	V	Core course	BH.USBO502	Plant diversity – IV	03
T.Y.B.Sc.	V	Skill enhancement course	BH.USBOP5	Practical paper I & II (based on 501&502)	02
T.Y.B.Sc.	V	Discipline specific elective	BH.USBO503	Form and functions- III	03
T.Y.B.Sc.	V	Discipline specific elective	BH.USBO504	Current trends in plant sciences – II	03
T.Y.B.Sc.	V	Skill enhancement course	BH.USBOP6	Practical paper III & IV (based on 503&504)	02
T.Y.B.Sc.	V	Generic elective	BH.USBOAC HO501	Horticulture and gardening –I	03

T.Y.B.Sc.	V	Generic elective	BH.USBOAC HO5P1	Practicals based on horticulture and	01
TVDC	1/1	Company		gardening –I	02
T.Y.B.Sc.	VI	Core course	BH.USBO601	Plant diversity –III	03
T.Y.B.Sc	VI	Core course	BH.USBO602	Plant diversity – IV	03
T.Y.B.Sc.	VI	Skill enhancement course	BH.USBOP7	Practical paper I & II (based on paper 601 &602)	02
T.Y.B.Sc.	VI	Discipline specific elective	BH.USBO603	Form and functions- III	03
T.Y.B.Sc.	VI	Discipline specific elective	BH.USBO604	Current trends in plant sciences – II	03
T.Y.B.Sc.	VI	Skill enhancement course	BH.USBOP8	Practical paper III & IV (based on paper 603 & 604)	02
T.Y.B.Sc.	VI	Generic elective	BH.USBOAC HO601	Horticulture and gardening –II	03
T.Y.B.Sc.	VI	Generic elective	BH.USBOAC HO6P1	Practicals based on Horticulture And Gardening –II	01
				Total	70

DETAILED SYLLABUS – <u>SEMESTER III</u>

PREAMBLE

F.Y.B.Sc syllabus has been revised last year, the committee has taken utmost care to maintain the continuity in the flow of information of higher level at S.Y.B.Sc. The syllabus is prepared keeping in view the requirement of Botany students. Hence some of the modules of have been upgraded in order to make the learners aware about the recent developments in various branches of Botany like Algae, Fungi, Bryophyta, Pteridophyta, Gymnosperms, Angiosperms, Genetics, Molecular Biology, Anatomy and Physiology. The content of Biostatistics, Bioinformatics, instrumentation Medicinal Botany & Cosmetology will raise the student's awareness in Interdisciplinary approach of learning.

Progr	amme: B.Sc.				Seme	ster: III	
Cours	e: BOTANY	7			Cours	se Code: BH.U	SBO301
	Teach	ing Scheme		Ev	aluatio	on Scheme (The	eory)
Lectur (Perio per we	ds (Periods	(Periods	Credits (Theory +Practical)	Continuous Internal Assessment (CIA)		End Semeste Examination	
03	3 01	NA	02+01	(Marks -	40)	(Marl	ks: 60)
Pre-re	equisites: Passe	d HSC/CBSC/I	CSC from Sci	ience stream.			
Cours	e Objectives:						
1. Plar	nt diversity is an	undergraduate	S.Y. B.Sc. B	otany course	will de	als with genera	l characters of
Phaeo	phyta, its reprod	uction along w	ith economic	importance; a	and also	b learn the stage	es of life cycle
of Ant	hoceros and Fur	naria					
2. The	students will be	able to learn an	igiosperm fam	ilies like Leg	uminos	ae, Asteraceae,	Apocynaceae,
Amara	anthaceae and Pa	Ilmae & identify	ying them bas	ed on their m	orpholo	ogical features.	
3. The	e students will	be able to learn	n the basic sl	cills regarding	g mode	ern techniques	to study plant
diversi	ity which includ	es microscopy,	preservation 1	nethods, chro	matogr	aphy and gel el	ectrophoresis
Cours	e Outcomes:						
The st	udents will able	to:					
1.They	will understand	l in detail about	the life-cycle	s of Sargassu	ım (Pha	eophyta membe	er) and the use
of alga	ae in various app	lication, along	with life-cycle	e of Anthocer	os and	Funaria	
2. The	y will be able to	identify and cla	assify angiosp	erm plants fa	milies o	easily.	
3 The	ey will have c	omprehensive	knowledge a	bout basic	concept	ts of preserva	tion methods,
micros	scopy, chromato	graphy and gel	electrophores	is.			
			INDEX	K			
Unit	Description						Periods
1	Thallophyta (A	lgae & Bryophy	vta)				15
2	Angiosperms						15
3	Tools & Techni	ques to Study F	Plants				15
	PRACTICAL F	Paper I – Plant I	Diversity II BI	H.USBOP1			30
	Total						75

Units	Detailed descriptions	Lecture Period/
1	Unit I: Thallophyta (Algae & Bryophyta)	unit 15
l		15
	General Characters of Division Phaeophyta: Distribution, Cell	
	structure, range of thallus, Economic Importance.	
	 Structure, life cycle and systematic position of <i>Sargassum / Padina</i> General Account of Class Anthocerotae and Musci 	
	□ Structure, life cycle and systematic position of	
	o Anthoceros	
	o Funaria	
`		15
2	Unit II: Angiosperms	15
	Systematics: Objectives and Goals of Plant systematic	
	Plant Nomenclature Transport in relation to	
	\Box Taxonomy in relation to	
	Anatomy	
	Palynology	
	Chemical constituents	
	Embryology	
	Cytology	
	Ecology	
	With the help of Bentham and Hooker's system of Classification for flowering plants study the vegetative, floral characters and economic importance of the following families:1. Leguminosae	
	2. Asteraceae	
	3. Apocynaceae	
	4. Amaranthaceae	
	5. Palmae	
3	Unit III: Tools & Techniques to Study Plants	15
	Preservation methods for plants: Dry and Wet method	
	□ Microscopy – Principle and working of Light, and electron	
	microscope.	
	□ Chromatography- Principles and techniques in paper and thin layer	
	chromatography.	
	□ Principles and techniques of Horizontal and Vertical electrophoresis.	

Unit	Practical's Semester-III Paper I Plant Diversity II BH.USBOP1	Periods /unit
1	Algae & Bryophyta	10
	1. Study of stages in the life cycle of Sargassum/ Padina from fresh/	
	preserved	
	material and permanent slides.	
	2. Economic importance and range of thallus in Phaeophyta	
	3 Study of stages in the life cycle of Anthoceros from fresh/ preserved	
	material and permanent slides.	
	4 Study of stages in the life cycle of <i>Funaria</i> from fresh/ preserved	
	material and permanent slides.	
2	Angiosperms	10
	- Study of plants for anatomy in relation to taxonomy.	
	-Study of plants for Phenols and Flavanoids (chemotaxonomy).	
	- Study of one plant from each family prescribed for theory:	
	morphological peculiarities and economic importance of the members of	
	these families.	
3	Techniques to study Plant Diversity	10
	- Preparation of herbarium and wet preservation technique	
	- Chromatography: Separation of amino acids by circular paper	
	chromatography	
	- Separation of Carotenoids by thin layer chromatography	
	- Horizontal and Vertical Gel Electrophoresis – Demonstration	
'ext bo	oks	
1. A	Andrew Lack, David Evans (2021) BIOS Instant Notes in Plant Biology. CRC	Press.
	Practical In Botany S.Y.B.Sc. Sem III & IV Sheth Publication	
	Botany-I (Plant Diversity)- Dr Avinash Patil, Dr Bindu, Dr Lalsahab (2017)	
	Botany-II (Forms & Function)- Dr Avinash Patil, Dr Aruna, Dr Avhad ce Books:	
		osis in Algoo.
	ohn Albert Raven, Anthony Larkum, Arthur R. Grossman (2020) Photosynth	cois ill Aigat.
	Biochemical and Physiological Mechanisms	Walter I. 11
	Douglas Soltis, Pamela Soltis, Peter Endress, Mark Chase, Steven Manchester	
	Lucas Majure, and Evgeny Mavrodiev (2005). Phylogeny and Evolution of the	ne Angiosperms
	Revised and Updated Edition Second Edition, Revised	
3. E	BP Pandey · 2001, College Botany - Volume I. S. Chand Publication.	

- 4. BP Pandey \cdot 2001, College Botany Volume III. S. Chand Publication.
- 5. BP Pandey \cdot 2007, Botany for Degree Students Year II. S. Chand Publication.
- S.M. Reddy · 2001, University Botany I: (Algae, Fungi, Bryophyta And Pteridophyta. New Age International Publication Limited. New Delhi.
- 7. A.M Bendre 2008, Practical Botany. Rastogi Publication, Gangotri.
- B.R. Vashishta, Dr. A. K. Sinha, Dr. V.P. Singh. 2010. Botany For Degree Students -ALGAE.
 S. Chand Publication.
- B.R. Vashishta, Dr. A. K. Sinha, Dr. Adarsh Kumar. 2011. Botany For Degree Students Bryophyta. S. Chand Publication
- 10. O.P Sharma. 2017. Algae. McGraw Hill Education.
- 11. O.P Sharma. 2017. Bryophyta. McGraw Hill Education.
- 12. Bhojwani SS, Bhatnagar SP, Dantu PK (2020). The embryology of angiosperms.

Self-evolving topics

1.Identify taxonomic position of plants and also use principle of nomenclature and classification in Botany by asking students to make a report of Plant diversity in Bhavan's Campus.

Self-Study material-

- 1. The students show study the basic classification of cryptogams and Phanerogams using the classical books under the guidance of the faculty members.
- 2. Basic understanding of the fundamental principles of Chemistry and physics should also be revived by the students.
- **3.** The ebooks circulated by the faculty members for the subject/ topic (Each unit) concerned should be studied in detail.

Programme: B.Sc.					Semester: III		
Course: BOTANY					Course Code: BH.USBO302		
Teaching Scheme Evaluation Scheme (Theory)				neory)			
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial (Periods per week per batch)	Credits (Theory +Practical)	Continuous Internal Assessment (CIA)	Examination		
03	01	NA	02+01	(Marks -	40) (Mar	·ks: 60)	

Pre-requisites: Passed HSC/CBSC/ICSC from Science stream.

Course Objectives:

1. The student will deals with both conceptual and practical tools for studying the cell organelles, mitosis and meiosis.

2. They will learn about plastid inheritance and chromosomal aberrations and will also be able to learn the concept of sex determination in monoecious and dioecious plants

3. The students will learn about the idea of nucleic acid, DNA, RNA and mechanism of replication in prokaryotes and eukaryotes.

Course Outcomes:

The students will able to:

1. The student will gain knowledge about the cell organelles, mitosis and meiosis.

2. The student will gain knowledge about the plastid inheritance, chromosomal aberrations and also

of sex determination in monoecious and dioecious plants

3. The student will gain knowledge about mechanism of replication in prokaryotes and eukaryotes.

	INDEX			
Unit	Description	Periods		
1	Cell Biology	15		
2	Cytogenetics	15		
3	Molecular Biology	15		
	Practical Paper II – Form And Function-II BH.USBOP2	30		
	Total	75		

nits	Detailed descriptions	Lecture
		Period/
		unit
L	Unit I: Cell Biology	15
	□ Ultrastructure and functions of the following cell organelles:	
	• Mitochondrion (membranes, cristae, F1 particles and matrix)	
	 Peroxisomes and Glyoxysomes 	
	• Ribosomes (prokaryotic, eukaryotic and subunits)	
	□ Cell Division and its significance	
	• Cell Cycle, structure of Interphase Nucleus (nuclear envelop,	
	chromatin network, nucleolus and nucleoplasm)	
	 Mitosis & Meiosis & its Differences 	
	Nucleic Acids: Types, structure and functions of DNA and RNA	
2	Unit II: Cytogenetics	15
	• Variation in Chromosome structure (Chromosomal Aberrations)	
	Definition, Origin, Cytological and Genetic Effects of the	
	following:	
	Deletions, Duplications, Inversions and Translocations.	
	• Sex determination, Sex linked, sex influenced and sex-limited	
	traits:	
	Sex determination- Chromosomal Methods: heterogametic males	
	and heterogametic females. Sex determination in monoecious and	
	dioecious plants.	
	Genic Balance Theory of sex determination in Drosophila, Lyon's	
	Hypothesis of X chromosome inactivation.	
	Sex linked- eye colour in Drosophila, Haemophilia, colour	
	blindness	
	Sex influenced- baldness in man	
	Extranuclear Genetics	
	Organelle heredity:	
	• Chloroplast determines heredity - Plastid transmission in plants,	
	Streptomycin resistance in Chlamydomonas.	
	Male sterility in maize	
3	Unit III: Molecular Biology	15

1 Cell Biology 10 1. Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. 10 2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 3 Cytogenetics 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		DNA replication: Modes of Replication, Meselson and Stahl	
and molecular mechanism of replication. Protein Synthesis: Central dogma of Protein synthesis Transcription in prokaryotes and eukaryotes: promoter sites, initiation, elongation and termination. RNA processing: Adenylation & Capping. Practical Semester-III Paper II – Form and Function- II Periods /u 1 Cell Biology 10 1. Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. 1 Periods /u 2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 10 2 Cytogenetics 10 4. Study of explogical consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		Experiment,	
 Protein Synthesis: Central dogma of Protein synthesis Transcription in prokaryotes and eukaryotes: promoter sites, initiation, elongation and termination. RNA processing: Adenylation & Capping. Practical Semester-III Paper II – Form and Function- II Cell Biology Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). Study of inheritance pattern with reference to Plastid Inheritance. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. Study of mitosis and meiosis from suitable plant material. Molecular Biology DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 		DNA replication in prokaryotes and eukaryotes- enzymes involved	
 Central dogma of Protein synthesis Transcription in prokaryotes and eukaryotes: promoter sites, initiation, elongation and termination. RNA processing: Adenylation & Capping. Practical Semester-III Paper II – Form and Function- II Cell Biology Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). Study of inheritance pattern with reference to Plastid Inheritance. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. Study of mitosis and meiosis from suitable plant material. Molecular Biology DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 		and molecular mechanism of replication.	
• Transcription in prokaryotes and eukaryotes: promoter sites, initiation, elongation and termination. RNA processing: Adenylation & Capping. Practical Semester-III Paper II – Form and Function- II Periods /u 1 Cell Biology 10 1. Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. 10 2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 10 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 10 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		Protein Synthesis:	
initiation, elongation and termination. RNA processing: Adenylation & Capping. Practical Semester-III Paper II – Form and Function- II Periods /u 1 Cell Biology 10 1. Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. 10 2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 10 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 10 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		• Central dogma of Protein synthesis	
RNA processing: Adenylation & Capping. Practical Semester-III Paper II – Form and Function- II Periods /u 1 Cell Biology 10 1. Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. 2. 2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 10 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		• Transcription in prokaryotes and eukaryotes: promoter sites,	
Practical Semester-III Paper II – Form and Function- II Periods /u 1 Cell Biology 10 1. Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. 10 2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 2 Cytogenetics 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 10 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		initiation, elongation and termination.	
I Cell Biology 10 1. Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. 10 2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 3. Estimation of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 10 3. Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic).		RNA processing: Adenylation & Capping.	
1. Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. 1. Study of the ultra-structure of cell organelles prescribed for theory from Photomicrographs. 2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 2 Cytogenetics 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		Practical Semester-III Paper II – Form and Function- II	Periods /unit
 from Photomicrographs. 2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 2 Cytogenetics 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 	1	Cell Biology	10
2. Estimation of DNA from plant material (one Std & one Unknown, No Std Graph). 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 2 Cytogenetics 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		1. Study of the ultra-structure of cell organelles prescribed for theory	
No Std Graph). 3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 2 Cytogenetics 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		from Photomicrographs.	
3. Estimation of RNA from plant material (one Std & one Unknown, No Std Graph). 2 Cytogenetics 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		2. Estimation of DNA from plant material (one Std & one Unknown,	
No Std Graph). 10 2 Cytogenetics 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		No Std Graph).	
2 Cytogenetics 10 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 10		3. Estimation of RNA from plant material (one Std & one Unknown,	
 4. Study of inheritance pattern with reference to Plastid Inheritance. 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 		No Std Graph).	
 5. Study of cytological consequences of chromosomal aberrations (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 10 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 	2	Cytogenetics	10
 (Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 		4. Study of inheritance pattern with reference to Plastid Inheritance.	
 ring) from permanent slides or photomicrographs. 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 		5. Study of cytological consequences of chromosomal aberrations	
 6. Study of mitosis and meiosis from suitable plant material. 3 Molecular Biology 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 		(Laggards, Chromosomal Bridge, Ring chromosome, Chromosomal	
 3 Molecular Biology 7. DNA sequencing- Sanger's method. Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic). 		ring) from permanent slides or photomicrographs.	
7. DNA sequencing- Sanger's method.Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic).		6. Study of mitosis and meiosis from suitable plant material.	
Determining the sequence of amino acids in the protein molecule synthesised from the given m-RNA strand (prokaryotic and eukaryotic).	3	Molecular Biology	10
synthesised from the given m-RNA strand (prokaryotic and eukaryotic).		7. DNA sequencing- Sanger's method.	
		Determining the sequence of amino acids in the protein molecule	
		synthesised from the given m-RNA strand (prokaryotic and eukaryotic).	
4 h h			
xt books	t boo	ks	

1. Andrew Lack, David Evans (2021) BIOS Instant Notes in Plant Biology. CRC Press.

- 2. Practical In Botany S.Y.B.Sc. Sem III & IV Sheth Publication
- 3. Botany-II (Forms & Function)- Dr Avinash Patil, Dr Aruna, Dr Avhad (2017)

Reference Books:

1.Griffiths, A.J.F and Gilbert, W.M (2nd edn). Modern genetic analysis. W.H. Freeman and Company, New york.

2.Strickberger, M.W: Genetics (4th edn). Mcmillan Publishing company, New York.

3.Janet Iwasa and Wallace Marshall, 2016 (8th edition) Karp's Cell and Molecular Biology. Wiley & Sons, Inc.

4.Geoffrey M. Cooper, 2018 (8th edition), The Cell: A Molecular Approach. Sinauer Associates Inc

5.Bruce Alberts, Karen Hopkin, Alexander D. Johnson, David Morgan, Martin Raff, Keith Roberts, Peter Walter, 2019 (5^a edition) Essential Cell Biology. W. W. Norton & Company.

6. Veer Bala Rastogi, 2021 Cell Biology. Medtech.

7.William S. Klug, Michael R. Cummings, Charlotte A. Spencer, Michael A. Palladino , Darrell Killian, 2019 (11^a edition), Concepts of Genetics. Pearson Education.

8.Benjamin Pierce, 2019 (7^a edition) Genetics: A Conceptual Approach. W H Freeman & Co.

9. James D. Watson, 2017 (7^a edition), Molecular Biology of The Gene. Pearson Education.

Self-evolving topics

Evaluate the impact of variation in DNA, chromosome numbers etc on organisms.

Self-Study material-

- 1. The students show study the basic understanding of cytology and genetics using the classical books under the guidance of the faculty members.
- 2. Basic understanding of the fundamental principles of Chemistry and physics should also be revived by the students.
- 3. The ebooks circulated by the faculty members for the subject/ topic (Each unit) concerned should be studied in detail.

Programm	e: B.Sc.				Seme	ster: III
Course: BOTANY				Course Code: BH.US		se Code: BH.USBO303
	Teaching	g Scheme		Eva	aluatio	on Scheme (Theory)
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial (Periods per week per batch)	Credits (Theory +Practical)	Continuous Internal Assessment (CIA)		End Semester Examination (ESE)
03	01	NÁ	02+01	(Marks -	40)	(Marks: 60)
Pre-requis	ites: Passed I	H.Sc./CBSc/I	CSC from Sc	ience stream.		
Course Ob	jectives:					
Current tr	ends in plant	t sciences is a	an undergradu	ate S.Y.B.Sc.	Botan	y course that deals with study
of Pharmac	ognosy under	stand about I	Pharmacopoei	a.		

1. Students will be able to study adulterants based on the knowledge of macroscopic features, microscopy, and chemical tests.

2. Students will also learn about forestry in terms of agro-forestry and urban forestry, organic farming, silviculture, plant-based fibers, spices and paper.

3. Students will be able to get to know about the industries based on plant products: Aromatherapy, Nutraceuticals, Enzymes and Biofuels.

Course Outcomes:

1. The students will understand monograph study from pharmacopoeia and detection of adulterants.

2. Gain knowledge about plant product sources pertaining to fibers, spices, condiments and paper.

3. The students will gain knowledge about Aromatherapy, concept of Nutraceuticals, important

industrial enzymes and different types of biofuels.

INDEX					
Unit	Description	Periods			
1	Pharmacognosy and Phytochemistry	15			
2	Forestry and Economic Botany	15			
3	Industry based on plant products	15			
	PRACTICAL Semester-III Paper-III Current trends in Plant Sciences I BH.USBOP3	30			
	Total	75			

Units	Detailed descriptions	Lecture
		Period/
		unit
1	Unit1: Pharmacognosy and phytochemistry	15
	Introduction to pharmacopoeia-US, British, European, Indian	
	Indian pharmacopoeia, Indian Herbal Pharmacopoeia and Ayurvedic	
	Pharmacopoeia	
	Study of Monograph from pharmacopoeia	
	Secondary Metabolites: Sources, properties, uses and adulterants, regional	
	and seasonal variations	
	Adulterants:	
	Saraca asoca, Polyalthia longifolia	
	Terminalia arjuna, Terminalia tomentosa	
	Bacopa monnieri, Centella asiatica	
	Abrus, Glycyrrhiza	
	Phyllanthus amarus (Bhuiamla)/ Phyllanthus madaraspatensis,	
	Phyllanthus imblica	
2	Unit 2: Forestry and Economic Botany	15
	Forestry: Outline of types of forest in India	
	Forestry: Agro-forestry, Urban forestry, organic farming, Silviculture	
	Economic Botany:	
	> Types of fibers: Coconut, Jute and cotton	
	Current trends in Fiber industries	
	Spices and condiments: Nutmeg, Saffron and cardamom	
	Commercial market of spices	
3	Unit 3: Industry based on plant products	15
	Aromatherapy- Introduction, Uses with few examples.	
	Lavender, Jojoba, lemon, jasmin	
	Botanical and nutraceuticals -Spirulina, Chlorella, Vanillin, Garcinia	
	indica/ Garcinia cambogia, and Kale.	
	Enzymes industry: Cellulases, Papain, Bromelain	
	Biofuels.	
Unit	PRACTICAL Semester-II Paper III Current trends in Plant Sciences I BH.USBOP3	Periods /unit

1	Study of -	10
	 Saraca asoka 	
	 Bacopa monnieri 	
2	Study of biodiversity	10
	(Visit to National Park/ Botanical Garden)	
	Sources of: Fibres & Paper	
	Spices & condiments-	
3	Preparation of herbal cosmetics (Face pack/ De-tanning cream/ Gel)	10
	Estimation of crude fibre in cereals & their products	
	Preparation & evaluation of probiotic foods	
	Evaluation of nutraceutical value of mushroom/ wheat germ	
	-	
Fext boo		
	rew Lack, David Evans (2021) BIOS Instant Notes in Plant Biology. CRC Pre na V (2010). Text book of Economic Botany. Ane Books Pvt Ltd	SS.
3. Dho	le A., Dhole V., Yeligar V., Magdum C. (2009). Textbook of Pharm	acognosy and
Phyt	ochemistry, 1st Edition, Pharma Career Publications.	
4. Prac	tical In Botany S.Y.B.Sc. Sem III & IV Sheth Publication	
5. Bota	ny-III (Current trends in Plant Sciences)- Dr Dhuri, Dr Drashana Patil, Dr Jath	nar (2017)
6. Will	iam Charles Evans, Trease and Evans Pharmacognosy (2009) Elsevier Health	Sciences, (16 th
editi	on)	
Reference	ee Books:	
l.Gokhal	e, S.B., Kokate, C.K., Purohit, A.P., (2009) A Textbook of Pharmacognosy, P	une, Nirali
Publicati	on	
2. Kochh	ar, S.L. (2012) Economic Botany in Tropics, MacMillan & Co. New Delhi, In	dia.
3. Sen S	(1992). Economic Botany, New Central Book Agency, Kolkata.	
4.Krishna	an, P.R., Kalia, R. K., Tewari, J.C., Roy, M.M., (2014) Plant Nursery Manager	ment:
Principle	s and Practices, Jodhpur, Central Arid Zone Research Institute	
5.Negi S.	S. (2008) Handbook of Forestry.	
5.Sagwal	S. S. (2016) Introductory Forestry. Kalyani Publisher, New Delhi	
	ar, S.L. (2016). Economic Botany- A Comprehensive Study (5th Edition),	University of
7. Kochh		

8. Shabir, Annamalai, Manzoor (2021). Plant Extracts: Applications in Food Industry, (1st Edition), Elsevier.

9. Gokhale, S.B., Kokate, C.K., Purohit, A.P., (2009) A Textbook of Pharmacognosy, Pune, Nirali Publication.

Self-evolving topics

- 1. Elementary knowledge of primary and secondary metabolites.
- 2. Primary analysis of crude drug obtained from leaves and bark.
- 3. Mushroom industry Cultivation and its commercial significance

Self-Study material-

- The students show study the basic understanding of about traditional knowledge (Ayurveda, Batch flower remedy etc.) under the guidance of the faculty members.
- 2. Basic understanding of the fundamental principles of Chemistry and physics should also be revived by the students.
- 3. The ebooks circulated by the faculty members for the subject/ topic (Each unit) concerned should be studied in detail.

De	Details of Conduct of Practical Examination (Evaluation Scheme):						
	A External Assessment 100%-50marks						
	Particulars	Paper I (BH.USBOP1)	Paper II (BH.USBOP2)	Paper III (BH.USBOP3)			
	Laboratory	40	40	40			
	work						
	Journal	05	05	05			
	Viva	05	05	05			
		50	50	50			

The students are required to present a duly certified journal for appearing at the semester end practical examination, failing which they will not be allowed to appear for the examination. In case of report of loss of Journal, a "Lost Certificate", should be obtained from Head/ Coordinator of the department; failing which the student will not be allowed to appear for the practical examination.

Note- Two short field excursion/ Long excursion for 2-4 days for habitat studies are compulsory. Field work of not less than eight-hour duration to one period per week for a batch of 15 students. The field excursion will be counted for 1-2 Credits for the student.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
CIA-1	Internal Class Test with Objective type questions and Short Notes	20
	Assignment/ Presentation/debate/ Analysis/ Project work/ Internship/ Training/ Paper presentation in national or international Seminar/Conference/ Report	20
CIA-2	writing for Short/long excursion etc.	20
	TOTAL	40

Assignment types can include: (Some examples are-)

1.Role of plants in the functioning of ecosystem

2.Phylogeny of plant diversity

3.Symptoms of Fungal diseases cycle and its impact on crops provide the control measures.

CIA-2 for Semester 3

Paper	301	302	303
Assignment type	Exploration/ survey/ analysis	Power point presentations/ Assignment writing/ etc.	Survey/ Assignment writing/ etc.
Skill assessed	Research skills	Presentation/ Language/ data collection & compilation, etc.	Research skills/ data gathering and compilation, etc.
Topic's			
a	Study of algae from bhavans lake	Sex determination in heterogametic males	Study of different adulterants used in food and beverages
b	Study of list of bryophytes found in Bhavans campus.	Sex determination in heterogametic females	Study of different adulterants used in ayurvedic medicines
c	Study of angiosperms and its diversity in Bhavans campus.	How proteins are related to genes?	Study of different face- packs/ creams etc. used in cosmetic industry and utility of plants in it.
d	Tools and techniques used in collection of algae & Bryophytes	History of discovery of DNA in your own words?	Which products from forest can be economically exploited sustainably
e	Tools and techniques used in collection of angiosperms and its preservation	Protein synthesis in prokaryotes and eukaryotes.	Which 5-10 plants are exploited across the globe for its economic importance?

B) External Examination 60%- 60 Marks Semester End Theory Examination (offline mode)

Duration of examination: **2hours**

Paper Pattern:

1. There shall be three questions from each unit.

- 2. There shall be an internal choice in first the questions.
- 3. The fourth question would be a mixed of all units
- 4. All four questions shall be compulsory.

Paper Pattern:(Semester end Examination III)

Sr.no	Questions	Question	Option	Marks	Total marks
	on				
1	Unit-I	A or A and B	Any two out	8 or 8 marks	15
			of three	and 7marks	
2	Unit-II	A or A and B	Any two out	8 or 8 marks	15
			of three	and 7marks	
3	Unit-III	A or A and B	Any two out	8 or 8 marks	15
			of three	and 7marks	
4	All Units	A, B, C, D and	Any three	5 marks each	15
		Е	out of Five		
				Total	60

Overall Examination & Marks Distribution Pattern

Course BH.USBO	301, 302 &	01, 302 & 303 401,402 & 403				Grand	
	Internal	External	Total	Internal	External	Total	
Theory	120	180	300	120	180	300	600
Practical		150	150		150	150	300
							900

Semester III

Rubrics of evaluation for ESE

15
15
15
15
60

Rubrics of evaluation for CIA-2- Assignment/ Presentation/debate/ Analysis/ Project work/ Internship/ Training/ Paper presentation in national or international Seminar / Conference/ Report writing for Short/long excursion etc.

C	966.	
	a33.	

ss:	Roll N	0	r	Горіс				
Parameters	Max Marks	80 – 100% Excellent	60 -80% Good	40 – 60% Satisfactory	20 – 40% Poor	0-20% very poor		
CONTENT	10							
Content: Introduction –	02							
Content: Development	03							
Content:- Conclusion -	03							
Content: - Bibliography	02							
Effective communicatio n skill	10							
Language, Style and Structure;	05							
Teaching aids;	05							
Total	20							

Progr	Programme: B.Sc. Semester: IV							
Cours	se:	Botany				Cours	e Code: BH.	USBO401
		Teaching	scheme		Ev	aluatio	n Scheme (T	heory)
Lecture (Period week)		Practical (Periods per week per batch)	Tutorial (Periods per week per batch)	Credits (Theory +Practical)	Continuous In Assessment (C		End Semester (ESE)	Examination
03	3	01	NA	02+01	(Marks -	40)	(Ma	orks: 60)
Pre-requisites: Passed HSC/CBSC/ICSC from Science stream.								
Course Objectives:								
1 Plant diversity is an undergraduate S.Y. B.Sc. Botany course will deals with general characters of								
Ascomycetae fungi, life-cycles of Erysiphe, Xylaria and Lichens along with Plant Pathology and								
various application of fungi and Lichens								
2 The	2 The students will able learn the various type of Fossils along with the life cycle of Selaginella and							
Rhynia, based on their morphological & anatomical features.								
3 The students will be able to learn Salient features and economic importance of Coniferophyta and								
study the life cycle of Pinus and Cordaites based on their morphological & anatomical features								
Course Outcomes:								
The st	udents	will able to:						
1.Gair	n deta	iled knowled	lge about t	he general c	haracters an	d life-o	cycles of Erg	ysiphe, Xylaria
	•	C /		their various				
		• •	-		-	-	Ū.	ella and Rhynia
3 Gain comprehensive knowledge about Salient features and economic importance of Coniferophyta					Coniferophyta			
along with life cycle of <i>Pinus</i> and <i>Cordaites</i> .								
				INDEX				
Unit	Dese	cription					Р	eriods
1	Unit l	: Thallophyta	a: Fungi, Pla	nt Pathology a	and Lichens F	Fungi		15
2	Unit l	II: Pteridophy	ta and Paleo	botany				15
3	Unit I	III: Gymnosp	erms					15
1	PRAG	CTICAL Pape	er I – Plant E	Diversity II BH	I.USBOP1			30
	Tota	1						75
							l	

Units	Detailed descriptions	Lecture
		period
		/unit
1	Unit I: Thallophyta: Fungi, Plant Pathology and Lichens Fungi	15
	□ General characters of Ascomycetae	
	□ Structure, life cycle and systematic position of <i>Erysiphe</i> and <i>Xylaria</i>	
	□ Plant Pathology- Symptoms, causative organism, disease cycle and	
	control measures of Powdery mildew and Late blight of potato	
	□ Lichens- Classification, Structure, Method of Reproduction, Economic	
	Importance and Ecological Significance of Lichens.	
2	Unit II: Pteridophyta and Paleobotany	15
	Pteridophyta	
	□ Salient features and classification upto orders (with examples of each)	
	of Psilophyta and Lepidophyta (G M Smith's system of classification to be	
	followed)	
	□ Structure, life cycle and systematic position of <i>Selaginella</i>	
	Paleobotany-	
	The geological time scale; Formation and types of fossils;	
	Structure and systematic position of form genus Rhynia	
3	Unit III: Gymnosperms	15
	\Box Salient features, classification up to orders (with examples of each) and	
	economic importance of Coniferophyta (Chamberlain's system of	
	classification to be followed)	
	□ Structure life cycle and systematic position of <i>Pinus</i>	
	□ Structure and systematic position of the form genus <i>Cordaites</i>	
Unit	Practicals Semester-IV Paper I Plant Diversity II BH.USBOP1	Periods /unit
1	Fungi and Plant Pathology	10
	1 Study of stages in the life cycle of <i>Erysiphe</i> from fresh/ preserved	
	material and permanent slides.	
	2 Study of stages in the life cycle of <i>Xylaria</i> from fresh/ preserved material	
	and permanent slides.	
	3 Study of fungal diseases as prescribed for theory.	
	4 Study of Lichens (crustose, foliose, & fruiticose).	

	5-6 Study of stages in the life cycle of Selaginella from fresh/ preserved						
	material and permanent slides.						
	7 Study of form genera <i>Rhynia</i> with the help of permanent slides/						
	photomicrographs.						
3	Gymnosperms	10					
	8- Study of stages in the life cycle of <i>Pinus</i> from fresh/ preserved material						
	and permanent slides.						
	9- Study of the form genus <i>Cordaites</i> with the help of permanent slide/						
	photomicrographs.						
Fext b	pooks						
1.	Andrew Lack, David Evans (2021) BIOS Instant Notes in Plant Biology. CRC	Press.					
2.	Practical In Botany S.Y.B.Sc. Sem III & IV Sheth Publication						
3.	Botany-I (Plant Diversity- II)- (2017). TechMack Publication.						
Refere	ence Books:						
1.	Agashe SN (1995) Paleobotany, Oxford and IBH Publ. Co.Pvt. Ltd., New Dell	hi.					
2.	Anold AC (2005 Repr.) An Introduction to Paleobotany, Agrobios (India), Jodhpur.						
3.	Bhatnagar Sp and Motia A (1996) Gymnosperms. New Age International, New Delhi.						
4.	Biswas C and Johri BM (1997) Gymnosperms. Narso. Pub., New delhi.						
5.	Chamberlain CJ (1986) Structure and Evolution. CBS Punlishers, New Delhi						
6.	Rashid A (1999) An introduction to Pteridophyta. Vikas Publishing house Pvt.	Ltd. New					
	Delhi.						
7.	Sharma OP (1990) textbook of Pteridophyta. Mac Millan India Ltd. Delhi.						
8.	Smith GM (1955) Cryptogamic Botany Vol. II Mc Grew Hill.						
9.	Sundara Rajan S. (1999) Introduction to Pteridophyta. New Age International	Publishers,					
	New Delhi.						

- 10. Parihar NS (1976) Biology and morphology of the Pteridophytes. Central Book Dep
- Vashishta B.R./ Sinha A.K. & Kumar Adarsh (2016), Botany for Degree Students: Fungi (Revised Multi-Colour Edition, S. Chand Publication
- 12. BP Pandey \cdot (2001) College Botany Volume I, S. Chand Publication
- 13. BP Pandey \cdot (2001) College Botany Volume III, S. Chand Publication
- 14. BP Pandey $\cdot (\ 2007\)$ Botany for Degree Students Year II, S. Chand Publication
- 15. A.M Bendre (2008) Practical Botany, Rastogi Publication, Gangotri
- 16. Chhaya Biswas, B.M. Johri \cdot (2013) , The Gymnosperms , Springer-Verlag Berlin
- 17. Anil Kumar ·(2006) Botany for Degree Students: Gymnosperms, S. Chand Publication

- 18. K.U. Kramer, P.S. Green \cdot (2013), Pteridophytes and Gymnosperms, Springer-Verlag Berlin
- 19. B.R. Vasishta, Dr. A.K. Sinha (2014) Botany For Degree Students Fungi S.Chand

Publications

20. P Sharma (2017) Pteridophyta McGraw Hill Education

Self-evolving topics

Recognize fungal diseases; Powdery mildew and Late blight of potato Differentiating between the different types of lower plants and its characteristics

Self-Study material-

- 1. The students show study the basic understanding of about cryptogams and phanerogams under the guidance of the faculty members.
- **2.** Basic understanding of the fundamental principles of Chemistry and physics should also be revived by the students.
- **3.** The ebooks circulated by the faculty members for the subject/ topic (Each unit) concerned should be studied in detail.

ctical riods per ch per ch) 01 ves: ill study e system o learn ab otoperiod vill learn des: vill gain l acture and ill gain k ll gain th	etc. out basic phy lism and ver about the bi- knowledge a functions w nowledge of he knowledge	ysiological pa nalization med ogeochemical bout how diff with respect to various physic of biogeoche	Eval Continuous Inte Assessment (CL (Marks - 40 owth in plants p athways occurrin chanisms. l cycles, environ	(ESE) (Marts, formation of g in plant ranging mental factors an e and organs hav nt. ses in plant body	Theory) er Examination Iarks: 60) f growth rings, g from nd community ve originated and	
ctical riods per ch per ch) 01 ves: ill study e system o learn ab otoperiod vill learn des: vill gain l acture and ill gain k ll gain th	Tutorial (Periods per week per batch) NA primary and etc. out basic phy dism and verr about the bid knowledge a functions w mowledge of eknowledge	(Theory +Practical) 02+01 secondary gro ysiological pa nalization med ogeochemical bout how diff vith respect to various physic e of biogeochemical	Continuous Inte Assessment (CL (Marks - 40 owth in plants p athways occurrin chanisms. l cycles, enviror ferent plant tiss o their environme siological proce	End Semester (ESE) (mathematical formation of g in plant ranging mental factors and organs have and organs have nt. ses in plant body	er Examination Aarks: 60) f growth rings, g from nd community ve originated and	
riods per sk per ch) 01 ves: ill study e system b learn ab- otoperiod vill learn es: vill gain l acture and ill gain k ll gain th	(Periods per week per batch) NA primary and etc. out basic phy dism and verr about the bid knowledge a d functions we nowledge of he knowledge	(Theory +Practical) 02+01 secondary gro ysiological pa nalization med ogeochemical bout how diff vith respect to various physic e of biogeochemical	Assessment (CL (Marks - 40 owth in plants p athways occurrin chanisms. l cycles, enviror ferent plant tiss their environme siological proce	(ESE) (Marts, formation of g in plant ranging mental factors an e and organs hav nt. ses in plant body	Marks: 60) f growth rings, g from nd community ve originated and	
ves: ill study e system b learn ab otoperioc will learn will learn ces: vill gain l acture and ill gain k ll gain th	primary and etc. out basic phy dism and verr about the bio knowledge a d functions we nowledge of a knowledge	secondary gro ysiological pa nalization med ogeochemical bout how diff with respect to various physic of biogeoche	owth in plants p athways occurrin chanisms. l cycles, enviror ferent plant tiss their environme siological proce	arts, formation of g in plant ranging mental factors an le and organs hav nt. ses in plant body	f growth rings, g from nd community ve originated and	
ill study e system learn ab otoperioc will learn will gain l cture and ill gain k ll gain th	etc. out basic phy lism and ver about the bi- knowledge a functions w nowledge of he knowledge	ysiological pa nalization med ogeochemical bout how diff with respect to various physic of biogeoche	athways occurrin chanisms. l cycles, enviror ferent plant tiss o their environmo siological proce	g in plant ranging mental factors an le and organs hav nt. ses in plant body	g from nd community ve originated and	
e system learn ab otoperioc will learn vill gain l cture and ill gain k ll gain th	etc. out basic phy lism and ver about the bi- knowledge a functions w nowledge of he knowledge	ysiological pa nalization med ogeochemical bout how diff with respect to various physic of biogeoche	athways occurrin chanisms. l cycles, enviror ferent plant tiss o their environmo siological proce	g in plant ranging mental factors an le and organs hav nt. ses in plant body	g from nd community ve originated and	
e learn ab otoperiod will learn will gain l cture and ill gain k ll gain th	out basic phy dism and ver about the bi- knowledge a d functions w nowledge of a knowledge	nalization med ogeochemical bout how diff with respect to various physic of biogeoche	chanisms. l cycles, enviror ferent plant tiss their environme siological proce	mental factors an le and organs hav nt. ses in plant body	nd community ve originated and	
otoperiod will learn des: vill gain l acture and ill gain k ll gain th	dism and verr about the bio knowledge a d functions w nowledge of he knowledge	nalization med ogeochemical bout how diff with respect to various physic of biogeoche	chanisms. l cycles, enviror ferent plant tiss their environme siological proce	mental factors an le and organs hav nt. ses in plant body	nd community ve originated and	
will learn will gain l will gain l acture and ill gain k ll gain th	about the big knowledge a d functions w nowledge of a knowledge	bout how diff with respect to various physic of biogeoche	l cycles, enviror ferent plant tiss their environm siological proce	e and organs hav nt. ses in plant body	ve originated and	
es: vill gain l cture and ill gain k ll gain th	knowledge a d functions w nowledge of a knowledge	bout how diff with respect to various physic of biogeoche	ferent plant tiss their environm siological proce	e and organs hav nt. ses in plant body	ve originated and	
vill gain l acture and ill gain k ll gain th	l functions w nowledge of he knowledge	vith respect to various physe of biogeoche	their environments	nt. ses in plant body	4	
vill gain l acture and ill gain k ll gain th	l functions w nowledge of he knowledge	vith respect to various physe of biogeoche	their environments	nt. ses in plant body	4	
cture and ill gain k ll gain th	l functions w nowledge of he knowledge	vith respect to various physe of biogeoche	their environments	nt. ses in plant body	4	
ill gain k ll gain th	nowledge of e knowledge	various physe of biogeoche	siological proce	ses in plant body		
ll gain th	e knowledge	e of biogeoche	0 1			
-	-	•	emical cycles ,c	mmunity ecology	y, Soil organic	
	ant study in	field				
nd quadr	ant study III	neiu				
		INDEX	X			
tion					Periods	
Unit I: Anatomy					15	
Unit II: Plant Physiology and Plant Biochemistry					15	
Unit III: Ecology and Environmental Botany					15	
CAL Pape	er I – Plant I	Diversity II BI	H.USBOP1		30	
Total 75						
Ec	cology	cology and Environ	cology and Environmental Botan		cology and Environmental Botany	

Detailed	syllabus: Paper IIForm and Function- II BH.USBO402	
Units	Detailed descriptions	Lecture period /unit
1	Unit I: Anatomy	15
	Normal Secondary Growth in Dicotyledonous stem and root.	
	• Growth rings, periderm, lenticels, tyloses, heart wood and sap	
	wood.	
	Mechanical Tissue system	
	• Tissues providing mechanical strength and support and	
	their disposition	
	• I-girders in aerial and underground organs	
	• Types of Vascular Bundles.	
	Secretary and glandular tissue	
2	Unit II: Plant Physiology and Plant Biochemistry	15
	• Respiration: Aerobic: Glycolysis, TCA Cycle, ETS & Energetic of	
	respiration; Anaerobic respiration.	
	• Photorespiration	
	• Photoperiodism: Phytochrome Response and Vernalization with	
	reference to flowering in higher plants, Physico-chemical	
	properties of phytochrome, Pr-Pfr interconversion, role of	
	phytochrome in flowering of SDPs and LDPs;	
	Vernalization mechanisms and applications.	
3	Unit III: Ecology and Environmental Botany	15
	Biogeochemical Cycles- Carbon, Nitrogen and Water.	
	• Ecological factors: Concept of environmental factors (Biotic &	
	Abiotic). Types of Biotic Interactions. Soil as an edaphic factor,	
	Soil composition, types of soil, soil formation, soil profile.	
	Community ecology- Characters of community - Quantitative characters	
	and qualitative characters	
Unit	PRACTICAL Semester-IV Paper II FORM AND FUNCTION II BH.USBOP2	Periods /unit
1	Anatomy	10
	1. Study of normal secondary growth in the stem and root of a	
	Dicotyledonous plant.	

	2. Types of mechanical tissues, mechanical tissue system in aerial,	
	underground organs.	
	3. Study of conducting tissues- Xylem and phloem elements in	
	Gymnosperms and Angiosperms as seen in LS and through	
	maceration technique.	
	4. Study of different types of vascular bundles.	
	5. Growth rings, periderm, lenticels, tyloses, heart wood and sap	
	wood.	
	6. Study of secretary and glandular tissue	
2	Plant Physiology and Plant Biochemistry	10
	7. Q10 – germinating seeds using Phenol red indicator.	
	8. NR activity – <i>in-vivo</i> .	
	9. Estimation of proteins by Lowry's method (Prepare standard	
	graph).	
3	Ecology and Environmental Botany	10
	10. Study of the working of the following Ecological Instruments- Soil	
	thermometer, Soil testing kit, Soil pH, Wind anemometer.	
	11. Mechanical analysis of soil by the sieve method & pH of soil.	
	12. Quantitative estimation of organic matter of the soil by Walkley	
	and Blacks Rapid titration method.	
	13. Study of vegetation by the list quadrat method.	
<u>I</u>	1	

Text books

- 1. Andrew Lack, David Evans (2021) BIOS Instant Notes in Plant Biology. CRC Press.
- 2. Practical In Botany S.Y.B.Sc. Sem III & IV Sheth Publication
- 3. Botany-II (Forms & Function- II)- (2017)
- 4. Plants and Environment- A Text Book of Plant Ecology (3rd edition). By Daubenmire R.F.

1974. John Wiley & Sons. New York.

Reference Books:

- 1. Ro.Roy, (2010) Plant Anatomy. (2nd revised edition), New Central Book Agency.
- 2. Richard Crang, Sheila Lyons-Sobaski, Robert Wise (2018) Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants. (1st edition) Springer Nature Switzerland.

- Biju Dharamapalan, (2016) Plant Biochemistry- An Introduction. Alpha Science International Limited.
- Manju A. Lal and Satish C. Bhatla, (2018) Plant Physiology, Development and Metabolism. Springer Nature Singapore Pte Ltd.
- Angus S. Murphy, Ian M. Moller, Lincoln Taiz, Eduardo Zeiger (2018). Fundamentals of Plant Physiology. Sinauer Associates Inc.
- S. L. Kochhar, Sukhbir Kaur Gujral, (2020) Plant Physiology: Theory and Applications. Cambridge University Press. (2nd edition),
- Russell K Monson (2014) Ecology and the environment, Springer Science+ Business Media New York.
- 8. S. N. Pandey and B. K. Sinha (2014)., Plant Physiology Vikas Publishing House Pvt. Ltd.,
- 9. Salisbury F.B and Ross C.W (1992).Plant physiology (Fourth Edition) Wadsworth Publishing Company, California,USA.
- Kumar H.D. (1996) Modern Concepts of Ecology (3rd edition). Vikas Publishing House Pvt., Ltd. Delhi.
- 11. Kumar.H.D. (1997) General Ecology. Vikas Publishing Pvt. Ltd., Delhi.
- Weaver. J.E. and Clements. S.E. (1966) Plant Ecology. Tata McGraw Publishing Co. Ltd. Bombay.
- Esau (2006) Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development
- 14. Dickison, W.C .(2000). Integrated Plant anatomy. Cambridge, U.K.: Academic press Inc
- Bhatla, S.C., Lal, M.A. (2018). Plant Physiology, Development and Metabolism. Singapore: Springer Nature, Singapore Pvt Ltd
- Hopkins, W. G., Huner, N. P. A. (2009). Introduction to Plant Physiology, 4th edition. New Delhi, Delhi: Wiley India Pvt. Ltd
- Taiz, L., Zeiger, E., Moller, I. M., Murphy, A. (2015). Plant Physiology and Development, 6th edition. Sunderland, Massachusetts: Sinauer Associates Inc
- 18. Sharma, P.D. (2010). Ecology and Environment, 8th edition. Meerut, U.P.: Rastogi Pub.
- Cheplick, G.P. (2015) Approaches To Plant Evolutionary Ecology. Oxford University Press Inc

Self-evolving topics

1.Design strategies for restoration of ecosystem.

2. To apply and achieve sustainable development goals.

Self-Study material-

- 1. The students show study the basic understanding of about internal structure of the plants, which they have studied in their lower semesters/ classes.
- **2.** Basic understanding of the fundamental principles of Chemistry and physics should also be revived by the students.
- **3.** The ebooks circulated by the faculty members for the subject/ topic (Each unit) concerned should be studied in detail.

Progr	amme	: B.Sc.				Seme	ster: IV	
Cours	e:	Botany				Cours	se Code: B	H.USBO403
		Teaching	Scheme		Ev	aluatio	on Scheme	(Theory)
Lecture (Period week)	eriods per eek) (Periods per week per batch) (Periods per week per week per batch) (Periods (Theory +Practical) (ESE) (ESE)							ter Examination
03	3	01	NA	02+01	(Marks -	40)	()	Marks: 60)
Cours	e Obje	ectives:						
1. Stu	dents w	vill learn abo	out the Differ	rent types of	garden and ga	arden lo	ocations. T	he student will get
to kno	w abou	it the concep	t of national	parks and bo	tanical garder	1.		
2. The	e stude	nts will learn	about appli	cation of Biot	echnology in	field of	f plant Scien	nce and get
familia	arized	with the cond	cept of Reco	mbination DN	A Tech and	Organ c	culture.	
3. Solv	ving pr	oblems of bi	ostatistics ar	nd getting han	d- on training	g on bio	informatics	. Databases and
tools i	s also t	he prime obj	ective of the	course				
Cours	e Outo	comes:						
1. The	y will	become expe	ert in plannir	ng different ty	pes of garder	ns and c	can think of	starting their own
busine	ess.							
2. Stu	dents	will gain th	e Informati	on about Va	rious Plant t	issue c	ulture tech	nique along with
knowl	edge of	f Recombina	tion DNA te	chnology.				
3. The	y will	have in-dept	h Informatio	n about Biost	atistical tools	and Bi	oinformatic	cs Databases along
with S	copes	of Bioinform	atics in Indi	a.				
				INDEX	X			
Unit	Desc	ription						Periods
1	Hortic	ulture and G	ardening Int	roduction to l	Horticulture:			15
2	Unit I	I: Biotechnol	logy					15
3	Unit I	II : Biostatist	tics and Bioi	nformatics. B	iostatistics			15
1		cal Semeste SBO403	r-IV Paper	III Current	trends in	Plant S	Sciences I	30
	Total							75

Detailed	l syllabus: Paper III Current trends in Plant Sciences II BH.USBO403	
Units	Detailed descriptions	Lecture period /unit
1	Unit I: Horticulture and Gardening Introduction to Horticulture:	15
	Branches of Horticulture Gardening:	
	Locations in the garden- edges, hedges, lawn, flower beds, avenue, water	
	garden (with names of two plants for each category).	
	Focal point.	
	Types of garden	
	Formal and informal gardens- Zen Garden, Japanese, Mughal,	
	French, English, Nakshatra garden	
	National Park: Sanjay Gandhi National Park.	
	Botanical Garden: Veer Mata Jijabai Udyan (Victoria Garden).	
2	Unit II: Biotechnology	15
	Introduction to plant tissue culture	
	Laboratory organization and techniques in plant tissue culture	
	Totipotency	
	Organogenesis	
	Organ culture – root cultures, meristem cultures, anther and pollen	
	culture, embryo culture.	
	R-DNA technology	
	Gene cloning	
	Enzymes involved in Gene cloning	
	Vectors used for Gene cloning.	
3	Unit III: Biostatistics and Bioinformatics	15
	Biostatistics:	
	The chi square test.	
	Correlation – Calculation of coefficient of correlation.	
	Bioinformatics :	
	Information technology: History and tools of IT, Internet and its uses.	
	Introduction to Bioinformatics- goal, need, scope and Limitation.	
	Bioinformatics Databases- NCBI	
	Aims of Bioinformatics:	
	Data organization, Tools of Bioinformatics- tools for web search	
	Data retrieval tools- Entrez,	

	BLAST						
	Bioinformatics programme in India.						
T T •/							
Unit	Practical-Semester-IV Paper III Current trends in Plant Sciences I BH.USBOP3	Periods /unit					
1		10					
1	Horticulture	10					
	1 Study of five examples of plants for each of the garden locations as						
	prescribed for theory						
	2 Preparation of garden plans – formal and informal gardens						
	3 Bottle and dish garden preparation.						
2	Biotechnology	10					
	4 Various sterilization techniques						
	5 Preparation of Stock solutions, Preparation of MS medium.						
	6 Seed sterilization, callus induction						
	7 Regeneration of plantlet from callus.						
	8 Identification of the cloning vectors – pBR322, pUC 18, Ti						
	plasmid.						
3	Biostatistics and Bioinformatics	10					
	9 Chi square test						
	10 Calculation of coefficient of correlation						
	11 Web Search – Google, Entrez.						
	12 BLAST						
fext boo	ks						
1. A	ndrew Lack, David Evans (2021) BIOS Instant Notes in Plant Biology. CRC	Press.					
2. P	ractical In Botany S.Y.B.Sc. Sem III & IV Sheth Publication						
3. B	otany-III (Current Trends in Plant Sciences- II)- (2017)						
4. B	axevanis A. D., Francis Ouellette B. F. (2001). Bioinformatics A Practica	al Guide to the					
Analy	ysis of Genes and Proteins. John Wiley & sons Inc.,						
Referenc	ce Books:						
l. Rosali	nd Creasy (2010). Edible Landscaping.						
2. Huimi	n Zhao, Sang Yup Lee, Jens Nielsen, Gregory Stephanopoulos (2021). Prote	in Engineering,					
Fools and	d Applications.						
3.Sang Y	up Lee, Jens Nielsen, Gregory Stephanopoulos (2021). Metabolic Engineering	g, Concepts and					
Applicati	ons						
. Bernar	d Rosner (2015). Fundamentals of Biostatistics 8th Edition, Harvard Univers	ity.					

5. Zoe Eastwood (2019). Handbook of Plant Biotechnology.

6. DNA Technology: A reference Handbook, 2nd Edition (Contemporary world Issues), 2016.

7. Stewart C.N. (2008). Plant Biotechnology and Genetics: Principle, Techniques and application.

8. Jin Xiong (2007). Essential Bioinformatics, Cambridge University Press,

9. Charles Malkoff (2017). Bioinformatics, Proteomics and Genomics.

10. Douglas W. Tallamy and Rick Darke (2014). The Living Landscape: Designing for Beauty and

Biodiversity in the Home Garden Book. Timber Press.

Self-evolving topics .

Develop entrepreneurial skills.

Validate and document scientific data

Analyze the data scientifically

Apply bioinformatics tools for predicting the functioning of DNA and proteins

Instilling the confidence in students to become an entrepreneur

Self-Study material-

- 1. The students show study the basic understanding of garden and plants which are commonly seen in gardens.
- **2.** Basic understanding of the fundamental principles of Chemistry and physics should also be revived by the students. Basic knowledge of statistics needs to be studied.
- **3.** The ebooks circulated by the faculty members for the subject/ topic (Each unit) concerned should be studied in detail.

De	Details of Conduct of Practical Examination (Evaluation Scheme): A External Assessment 100%-50marks								
	Particulars	Paper I (BH.USBOP1)	Paper II (BH.USBOP2)	Paper III (BH.USBOP3)					
	Laboratory	40	40	40					
	work								
	Journal	05	05	05					
	Viva	05	05	05					
		50	50	50					

The students are required to present a duly certified journal for appearing at the semester end practical examination, failing which they will not be allowed to appear for the examination. In case of report of loss of Journal, a "Lost Certificate", should be obtained from Head/ Coordinator of the department; failing which the student will not be allowed to appear for the practical examination.

Note- Two short field excursion/ 2-4 days long excursion for habitat studies are compulsory .Field work of not less than eight-hour duration to one period per week for a batch of 15 students- **2 Credits**

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
CIA-1	Internal Class Test with Objective type questions and Short Notes	20
	Assignment/ Presentation/debate/ Analysis/ Project work/	
	Internship/ Training/ Paper presentation in national or	
	international Seminar/Conference/ Report writing for Short/long	
CIA-2	excursion etc.	20
	TOTAL	40

Assignment types can include:

- 1.Role of plants in the functioning of ecosystem
- 2.Phylogeny of plant diversity
- 3.Symptoms of Fungal diseases cycle and its impact on crops provide the control measures.

Paper	401	402	403
Assignment type	Field report/ Survey	Assignment writing	Project preparation
Skill assessed	Technical	Presentation and writing	Analytical/ application/ Problem solving/ Presentation
Topic's			
a	Collection of 5 plants with fungal diseases and its identification	Role of anatomy in plant classification in angiosperms	Nearby Garden visit and drawing its layout plan and mentioning each location with plant list.
b	Study of gymnosperms in Bhavans campus and develop key for its identification	Role of plants in the functioning of ecosystem	Potential of India in exporting PTC of ornamental plants
c	Study of pteridophytes in Bhavans campus and develop key for its identification	Role of anatomy in plant classification in gymnosperms	Potential of India in exporting PTC of medicinal plants
d	Study of 5 common fungi which spoils the food	Utility of C3 and C4 plants with respect to the Climate change	Application of principles of Biostatistics in garden or campus plants
e	Symptoms of Fungal diseases cycle and its impact on crops provide the control measures.	Why CAM plants are more suitable for growth in xeric condition as compared to C3 & C4 plants?	Study of garden of Bhavan's campus

CIA-2 for Semester 4

C) External Examination 60%- 60 Marks Semester End Theory Examination (offline mode)

Duration of examination: 2hours

Paper Pattern:

1. There shall be three questions from each unit.

- 2. There shall be an internal choice in first the questions.
- 3. The fourth question would be a mixed of all units
- 4. All four questions shall be compulsory.

Sr.no	Questions	Question	Option	Marks	Total marks
	on				
1	Unit-I	A or A and B	Any two out	8 or 8 marks	15
			of three	and 7marks	
2	Unit-II	A or A and B	Any two out	8 or 8 marks	15
			of three	and 7marks	
3	Unit-III	A or A and B	Any two out	8 or 8 marks	15
			of three	and 7marks	
4	All Units	A,B,C,D and E	Any three out	5 marks each	15
			of Five		
				Total	60

Paper Pattern:(Semester end Examination IV)

Overall Examination & Marks Distribution Pattern

Course BH.USBO	301,302 &	303		401,402 &403			Grand
	Internal	External	Total	Internal	External	Total	
Theory	120	180	300	120	180	300	600
Practical		150	150		150	150	300
							900

Semester-IV

Rubrics of evaluation for ESE

Unit	Knowledge	Understanding	Analysis & critical thinking	Total marks/unit
1 from all units	06	05	04	15
2	06	05	04	15
3	06	05	04	15
4	06	05	04	15
Total per objective	24	20	16	60

Rubrics of evaluation for CIA-2- Assignment/ Presentation/debate/ Analysis/ Project work/ Internship/ Training/ Paper presentation in national or international Seminar/Conference/ Report writing for Short/long excursion etc.

s:R	oll No		_ Topic			
Parameters	Max	80-100%	60 - 80%	40 - 60%	20 - 40%	0-20%
	Marks	Excellent	Good	Satisfactory	Poor	very poor
CONTENT	10					
Content:	02					
Introduction						
Content:	03					
Development						
Content:-	03					
Conclusion -						
Content: -	02					
Bibliography						
Effective	10					
communication						
skill						
Language, Style	05					
and Structure;						
Teaching aids;	05					
Total	20					